



## RELIABILITY IMPROVEMENT MEASURE AND ITS AVAILABILITY IMPACT ANALYSIS FOR CUTTING-EDGE ArFi LIGHT SOURCE

Sophia Hu, Futoshi Sato, Toshihiro Oga, Taku Yamazaki

#### Agenda

- Motivation
- RAM Enhancement Classification
- Approach
  - Reliability Improvement
  - Availability Improvement
  - Maintainability Improvement
- Value Analysis
- Summary



## Gigaphoton's Motivation for Providing Tool Time Enhancement

- Utilization improvement on ArF immersion tools for chip is the most important key parameter.
- In line with this, maximizing utilization requires "long-term stable operation" and "minimized maintenance time."
- In order to contribute from light source, Gigaphoton provides the key solution names "RAM Enhancement", targets on enhancing the Reliability, Availability, and Maintainability of an ArF immersion light source.

# RAM ENHANCEMENT



#### RAM Enhancement Clarification

#### Reliability

Improved optimized design for reliability improvement.

#### **Availability**

Reduce touch frequency, and enhance **M**ean **T**ime **B**etween **S**ervice (**MTBS**) for main modules.

#### **Maintainability**

Reduce Mean Time To Service (MTTS), by reducing parts exchange time.

## **Enhanced Tool Utilization**

Overcome the "99.8%-availability" barrier



#### Radiation Mechanism of Lightsource





#### RAM Enhancement Matrix

| Feature                                                                | Reliability | Availability | Maintainability |
|------------------------------------------------------------------------|-------------|--------------|-----------------|
| Optimized New Electrode Design for chamber                             | <b>✓</b>    | <b>✓</b>     |                 |
| Optimized Heat Absorption by LNM optical designing                     | ✓           | ✓            |                 |
| Synchronized Main Modules' replacement                                 |             | <b>✓</b>     | <b>✓</b>        |
| New software "Touch Mitigator" used for reducing Parameter Change Time |             | <b>✓</b>     | <b>✓</b>        |
| Reducing MTTS by GRYCOS Time Improvement                               |             | <b>✓</b>     | ✓               |

#### Classify of Annual Maintenance in ArF Immersion Light Source

- Top 4 modules service frequency is related with GRYCOS (Chamber), F<sub>2</sub>Trap, LNM and MM.
- Service time taken on Parameter Change is especially related with chamber.



Parammeter Change (CH Related)



# RELIABILITY IMPROVEMENT



#### Key Technology for Reliability Improvement



- Optimized module design on reducing life time's variations among specific module, is crucial to improve reliability.
- As a spin-off, it is expected to extend module's lifetime, reduce annual downtime, by reducing the frequency of PM (Periodical Maintenance) to one time a year on each system.
  - ▶ Chamber
    - ► Introduces durable "G-electrode"
  - ► Line Narrowing Module (LNM)
    - Optimized Heat Absorption by LNM optical designing

Optimized New Electrode Design – "G – electrode"



# Reliability Improvement for Conventional Chamber Chamber Survival Curve



Reliability improvement made at 30% by G-electrode

#### **Demonstrated Chamber Lifetime**



- Chamber lifetime is able to be extended by 1.2 times compared with conventional chamber.
- Realize **1.7hrs** reduction towards total events.



#### Optimized Heat Absorption by LNM optical designing



- LNM lifetime mostly depends on diffraction efficiency of grating and other optical elements.
- Lightsource's output energy decreases due to diffraction efficiency decreasing.
- Optimized Heat absorption by LNM optical designing



#### Reliability Improvement for Current LNM



Reliability improvement made at 40% by Optimized Optical Design

#### Reduces Optical Damage on Grating by Design Change



- Improves energy efficiency on latest LNM compared with current type.
- Realize **0.83hrs** reduction towards total events.

#### Contribution to Tool Time by Chamber & LNM Lifetime Extension



# AVALABILITY IMPROVEMENT



#### Synchronized Replace for Main Modules



- Synchronized parts
   exchange successfully
   reduce the exchange
   frequency from 4 times to
   1 time in one year.
- In this way, down time can be reduced to **10hrs**, from **15.7hrs**.

## Parameter Change Time Reduction - Touch Mitigator



Annual Reduction of **2.5hrs** on parameter change for chamber related is demonstrated.

- 30min to 0min for parameter change
- Parameter change is executed during "Gas adjustment" during scanner idle time.
- No influence on chip maker's productivity.

#### Contribution to Tool Time by Synchronized Exchange and Touch Mitigator



# MAINTAINABILITY IMPROVEMENT



#### MTTS Improvement – GRYCOS Time Improvement





- Key challenge is to reduce chamber maintenance time among top 4 modules.
- Service time taken on GRYCOS is crucial to reduce MTTS.
- Gigaphoton realized 2.5 hrs reduction by GRYCOS Time improvement.



## Contribution to Tool Time by GRYCOS Time Improvement



#### **0.12% Utilization** Up Towards Total Event



#### Down Time Reduction by RAM Enhancement

| Feature                                                                         | Reliability | Availability | Maintainability | Annual Time<br>Reduction |
|---------------------------------------------------------------------------------|-------------|--------------|-----------------|--------------------------|
| Optimized New Electrode Design for chamber                                      | ✓           | <b>✓</b>     |                 | 1.7hrs*1                 |
| Optimized Heat Absorption by LNM optical designing                              | ✓           | ✓            |                 | 0.8hrs*1                 |
| Synchronized Main Modules' replacement                                          |             | ✓            | ✓               | 5.7hrs*2                 |
| New software "Touch<br>Mitigator" used for<br>reducing Parameter<br>Change Time |             | ✓            | ✓               | 2.5hrs                   |
| Reducing MTTS by GRYCOS Time Improvement                                        |             | ✓            | ✓               | 2.5hrs                   |

Because reduction performance of \*2 is bigger than \*1, when executing both \*1 and \*2, value of \*1 can't be reflected.



# **VALUE**



#### RAM Value Analysis



- Ph1 module transition implementation is on going.
- 99.77%\$5.7M is demonstrated as of today.
- Ph2 and Ph3 are planned.
- By 2020, 99.89% and \$11.4M value creation is realized.

#### Summary

- RAM enhancement improve downtime reduction of PM through increasing baseline of tool utilization.
- Gigaphoton introduced durable "G-electrode" for chamber, and reduced optical damage on grating for enhance LNM lifetime.
- Top 4 modules service frequency reduction should be Chamber(GRYCOS), F2T, LNM and MM, and Parameter Change especially for chamber related.
- Gigaphoton introduced Touch Mitigator to reduce time for parameter change related with chamber.
- Gigaphoton synchronized modules exchange in order to support higher utilization.
- Gigaphoton's RAM goal >52wk MTBS and 4hr MTTS contribute to achieve 99.9% light source utilization and \$11.4M chipmaker's value could be provided.

#### Acknowledge

## Special Thanks to,

Gigaphton R&D Team: Takeshi Ohta

Gigaphoton Technical Support Team: Kazuaki Fukagawa

Gigaphoton Marketing Team: Takehiko Tomonaga







# THANK YOU