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• Optical CD metrology and why machine learning in OCD.

• Nova’s machine learning and big data solution.

• Performance:

1. Basic accuracy performance.

2. Budgeting accuracy and performance: spectral sensitivity, algorithm 
capacity, and data size and type.

• Summary

Outline
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OCD:

Why machine learning in OCD?

Stand-alone or SA

• Many illumination directions 

(azimuths and inclinations).

• Multiple polarization modes 

(full polarimetry).

Integrated metrology

• Less illumination and polarization 

modes.
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OCD modeling:

Why machine learning in OCD?

+ HVM worthy 

model:

Model

3D model:

Maxwell physical modeling:
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OCD modeling with machine learning:

Why machine learning in OCD?

+

HVM worthy 

model:

Model

ID CD

1 [0.54,0.43,…,0.32] 17.3A

2 [0.67,0.52,…,0.14] 16.3A

… … …

100 [0.33,0.15,…,0.28] 18.2A

Data:

Data science / modeling:
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So … why machine learning in OCD?

Accurate & robust:

• Spec ~ a few 
Angstroms

• Process splits and 
variations.

Productive:

• FMP ~ sub-Angstrom

• TPT ~ measure every 
wafer and every die.

SA optical or high-resolution non-optical: 

• Much information, highly accurate.

• Typically measures few wafers per lot.

• Requires expert work.

Integrated metrology tools

• Measures every wafer.

• Less information in spectrum.

• Requires expert work.

Automatic:

• Recipe creation time 
<< operator shift.

• Reproducible, 
predictable.
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FMP = Fleet Measurement Precision 

TPT = Throughput
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A machine learning big data system solves this 
tension. 
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The Standalone (SA) to Integrated (IM) Data Flow

Measure 

Measure

Results 

(labels)

Spectra, Results

NovaCenter

Train

Distribute

Updated Metrology 

Recipe

Validation

Results

Request

Computer 

Cluster

Monitor Train

IMIMIntegrated 

Metrology

MMSRMMSRStandalone
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Accuracy performance of machine learning

Example A:

Reference: CDSEM.

Inline tool: Nova Standalone.

Accuracy: 𝟏𝝈 ~ 𝟓. 𝟕𝑨
Train set:  ~50dies DOE wafers. 
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Accuracy performance of machine learning 
(also see SPIE 10585-32, 1014504, 97781W, JMM.15.4.044004)

Example A:

Reference: CDSEM.

Inline tool: Nova Standalone.

Accuracy: 𝟏𝝈 ~ 𝟓. 𝟕𝑨
Train set:  ~50dies DOE wafers. 

Example B:

Reference: Nova SA physical model.

Inline tool: Nova IM.

Accuracy: 𝟏𝝈 ~ 𝟓. 𝟔𝑨
Train set:  6000dies from POR sampling.
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Accuracy performance of machine learning-from SPIE Advanced 
Lithography P. Timoney et al. 10585-32 (see also 1014504, 97781W, JMM.15.4.044004)
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Accuracy performance of machine learning-from SPIE Advanced 
Lithography P. Timoney et al. 10585-32 (see also 1014504, 97781W, JMM.15.4.044004)
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Accuracy performance of machine learning-from SPIE Advanced 
Lithography P. Timoney et al. 10585-32 (see also 1014504, 97781W, JMM.15.4.044004)
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Error budgeting accuracy and robustness of machine 
learning

Robustness 

and 

Accuracy

Spectral 

sensitivity

Algorithm 

capacity 

(simple 

models vs. 

DNN)

Data size and 

type

Reference 

error

Today
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Accuracy: spectral sensitivity

• Transfer of a physical model solution on Nova SA to a 

Nova IM.

• Clearly ML is not `black magic’: 

• More spectral information improves accuracy by 2x: 

especially Normal channel vs Normal channel & 

Oblique.

• Have other examples where we see how spectral 

information reflects the underlying physics.

15



© Nova confidential & proprietary information

Machine learning helps balance 
spectral sensitivity vs. closeness to the process

16

Measure every die 

on every wafer
Deep-in-spec and per-

die accuracy.

Normal and 

Oblique spectra
Only Normal 

spectra

Closeness to the process Spectral sensitivity
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Balancing spectral sensitivity and closeness to the process

• Using machine learning we can 

balance spectral sensitivity and 

closeness-to-the-process.

• Customers are able to balance the 

two as per their specific needs.
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Accuracy: model capacity

• Transfer of a physical model solution on 

Nova SA to a Nova IM.

• Here, model capacity was modified by 

regularization on a fixed data size.

• Simplicity of model setup makes it easy to 

automate.

Example A: changing model capacity with a 

single hyper-parameter 
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Accuracy: model capacity

Example B: changing model capacity by changing 

the number of hyper-parameters

Straightforward algorithm flow

Signals 

(X)
Output (Y)

Prediction 

engine

…

Prediction 

parameters

Two-step algorithm

Signals 

(X)

Features / 

latent 

variables (Z)

Feature 

engine

Prediction 

engine

Output (Y) …

Feature 

generation 

parameters
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Accuracy: model capacity

Example B: changing model capacity by changing 

the number of hyper-parameters

CMP thickness case, from Standalone to Nova IM (train and test sets each comprised of production data of ~75 wafers)

Attribute

STD in Angstrom 23 16

R2 0.96 0.98

Slope 0.92 0.97
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Accuracy: data size

• An extreme case: can gain 15% accuracy by 

increasing train set from 10 to 50 wafers.

• Model retrain, enabled by a big data system, is 

important here. 

Example below: transfer of a physical model 

solution on SA to Nova IM.
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~10 wafers

~50 wafers

~200 wafers

time

Parameter

test
data from which one 

defines the train sets
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data for:
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Accuracy: data size and type
We find it is important to test how the blind test accuracy differs between two different update methods

time

Parameter

test
data from which one 

defines the train sets

Forward update

Available 

data for:

update1

update2

update3

1 2 3

time

Parameter

test
data from which one 

defines the train sets

Backward update

Available 

data for:

update1

update2

update3

3 2 1

 Any sizeable difference between forward and backward indicates process 

instability and the need for a dynamic update and control system.
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Accuracy: data size and type

• Process Window (PW) is important. Plot is 

a sketch of what happens when the PW 

drifted with time.

• Clearly if PW(train) ~ PW(test), accuracy is 

better.

• Model retrain, enabled by a big data 

system, is important here. 
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Example below: transfer of a physical model 

solution on SA to Nova IM.
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Accuracy: data size-from SPIE Advanced 
Lithography P. Timoney et al. 10585-32
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• E Test results from one of the GlobalFoundries products

Change with increasing training data size is moderate.
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• Modify model setup to balance accuracy with repeatability.

Algorithm performance: repeatability

Typically in machine learning

Signals 

with label 

(X)

Output 

labels (Y)

Train procedure feedback: 

optimizes matching to ground truth label 

Train 

prediction 

engine
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• Modify model setup to balance accuracy with repeatability.

Algorithm performance: repeatability

Typically in machine learning

Signals 

with label 

(X)

Output 

labels (Y)

Train procedure feedback: 

optimizes matching to ground truth label 

Train 

prediction 

engine

Machine learning in OCD metrology

Signals with 

label 

(X)
Output 

labels (Y)

Train procedure feedback:

optimizes matching to ground truth label 

and repeatability (self-matching)

Train 

prediction 

engine

Signals 

without label 
(e.g. repeatability)

(X)
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• Modify model setup to balance accuracy with repeatability.

Repeatability optimization
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Layer Accuracy change

[relative in percent]

Repeatability improvement

[relative in percent]

Logic

-21 +136

-17 +133

0 +40

-18 +123

-17 +155

Memory
-13 +123

-7 +11

Accuracy penalties are all less 

than 10% of customer spec

Improvement are significant, can 

be 50%-100% of customer spec
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• Interpretability: the `black box’ issue.

• Reference cost.

There are still unsolved problems, mainly:

Different approaches:

• Combining physical modeling and machine learning.

• Another alternative: see talk by Noam Tal at APC2018.
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Eitan, Ilya, YongHa, Noam, Oded, Shay, Ariel, Eylon, and Tal

Thanks to all my co-authors at Nova: the machine 
learning and big data group at Nova

And to the GLOBALFOUNDRIES and Nova authors of 
SPIE Advanced Lithography – Metrology, Inspection, and Process Control for 
Microlithography – P. Timoney et al. 10585-32

P. Timoney, T. Kagalwala, E. Reis, H. Lazkani, J. Hurley, H. Liu, 
B. Kang, P. Isbester, N. Yellai, M. Shifrin, Y. Etzioni
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