Aerial Imaging Technology for EUV Mask Making

Thomas Scherübl, Renzo Capelli, Dirk Hellweg, Martin Dietzel Carl Zeiss SMT, Germany

Agenda

- 1 Company Overview
- 2 Introduction to Aerial Imaging Metrology
- 3 AIMS™ EUV and Application Examples
- 4 Summary

Agenda

- 1 Company Overview
- 2 Introduction to Aerial Imaging Metrology
- 3 AIMS™ EUV and Application Examples
- 4 Summary

SMT is a segment of ZEISS, a leading international enterprise operating in the fields of optics and optoelectronics

Research & Quality Technology

1.538 billion euros revenue

approx. 6,300 employees

Medical Technology*

1.427 billion euros revenue

approx. 4,500 employees

Vision Care/Consumer Products

1.108 billion euros revenue

approx. 9,800 employees

As of 30 September 2017

*The values deviate from the published figures of Carl Zeiss Meditec AG as a result of different consolidation models.

SMT covers a variety of processes in the production of microchips – with three strategic business units and as a segment of the ZEISS Group

ZEISS Group

Semiconductor Manufacturing Technology Business Group

Strategic Business Unit
Semiconductor
Manufacturing Optics
(SMO)

Strategic Business Unit
Semiconductor
Mask Solutions (SMS)

Strategic Business Unit
Process
Control Solutions (PCS)

A place for innovation and growth: SMT fab in Oberkochen, Germany, is being further extended

Semiconductor Mask Solutions (SMS) Overview about Product Offering

Agenda

- 1 Company Overview
- 2 Introduction to Aerial Imaging Metrology
- 3 AIMS™ EUV and Application Examples
- 4 Summary

AIMS™ Concept: Looking at the Mask with Scanner Eyes!

AIMS™ - Aerial Image Measurement System

AIMS™ uses same wavelength, illumination condition and imaging NA as scanner

ZEISS celebrates 25 years of AIMS[™] technology

1993

Optical platform developed in collaboration with IBM

1994

MSM 100 market introduction (365/248 nm)

1999

MSM 193 market introduction (193 nm)

2000

First fab tool AIMS™ fab (248 nm)

2003

First fab tool with automatic handling AIMS™ fab plus

2006

AIMS™ 45-193i market leges Auss introduction (193 nm)

2009

AIMS™ 32-193i market introduction (193 nm)

2014

AIMS™ 1x-193i (193 nm)

2017

AIMS™ EUV (13.5 nm)

- Over the decades ZEISS has developed new AIMS™ generations to keep with the ongoing demands in mask making from i-line to EUV technology
- More than 100 AIMS™ systems have been delivered to the industry during that time
- AIMS™ has been established as an industry standard

AIMS[™] Main Application: Defect Disposition and Repair Verification

Agenda

- 1 Company Overview
- 2 Introduction to Aerial Imaging Metrology
- 3 AIMS™ EUV and Application Examples
- 4 Summary

AIMS™ EUV actinic mask review tool

AIMS™ EUV prototype

Examples of Illumination Conditions

O

- Mirror optics based actinic mask defect aerial imaging
- NA 0.33 scanner illumination & projection emulation

Performance Specifications		
Scanner emulation	Up to 0.33 NA	
CD Reproducibility	≤1.5 nm (3σ, mask level)	
Run Rate standard 7 focus planes per site	≥ 27.5/hr ≥ 51/hr	> 38.5% pupil fill > 77% pupil fill
Run Rate fast mode* 7 focus planes per site *CD-repro = 1.8 nm (3σ)	≥ 55/hr	>38.5% pupil fill

2018-10

New: EUV Scanner Emulation Scanner arc illumination

EUV illumination: **CRA with** θ and φ components

orientation & position dependent shadowing effects OPC/bias compensation across X-axis

AIMS[™] EUV at Intel: steps towards insertion into production

Following successful integration and acceptance, the tool has been handed over to customer in production

- Successful factory acceptance test
- Platform meets its performance specifications

- Successful final acceptance test
- Platform meets its target specifications
- Results obtained at Headquarter well reproduced

Tool in production

EUV Mask Challenges

New Class of defects which is not visible in mask SEM and DUV inspection:

Mask 3D Effects impact the imaging performance of photomask

Andreas Erdmann SPIE 2018

Wafer print*

AIMSTM EUV BACUS 2018 Aerial image based metrology of EUV masks

Multilayer defect printability with AIMS™ EUV

Imec through access with the support of all EMI members

Through-focus measurements of 146 native ML-defects as detected by ABI

- Correlation of AIMS™ EUV aerial image shows a good match to wafer prints over the range of printing impact
- Good correlation extends to defocus conditions within process window

Courtesy of Imec, Rik Jonckheere

*ASML NXE:3300 at imec

Aerial image based metrology of EUV masks

unec zein

Multi-metrology printability assessment of buried blank defect

The AIMSTM EUV aerial image contains ALL relevant information to predict the impact of the defect on the wafer

Assessment of alignment precision of mask pattern to blank inspection map (see R. Jonckheere, Proc. SPIE Vol. 10807 - PMJ2018)

Averaged and smoothed AFM-Profile along Trench (ZEISS SMT)

ABI inspection: detected

SEM review on mask: not visible

AFM review: detected

AIMSTM EUV review: detected

Wafer print: detected

Additional value of actinic review via AIMSTM EUV

Measurement of deviation of actual position from expected What is expected to be under absorber, might end up printing!

The full qualification of printing behavior is only possible via AIMSTM EUV aerial image

Aerial image based metrology of EUV masks

Defect detection below absorber, a door-opener to new applications

The AIMSTM EUV platform capabilities go well beyond defect disposition and review

Also when underneath the absorber, a ML-defect is visible and its imaging impact can be qualified

AIMSTM EUV sees all what's on the mask. Extremely sensitive to material and its changes in n,k.

Deposition

Repair Verification Successful repair examples from ZEISS MeRiT neXT

ZEISS supports fully automated analysis of AIMS™ EUV images via the FAVOR® platform

Pre repair SEM

1 2 3

Post repair SEM

Single Slice Analysis of AIMS™ EUV images

AIMS™ EUV – Applications beyond repair Printing Aware Metrology of Mask 3D Effects

- · Impact on wafer depends on structure, setting and focus
- Aerial Imaging specification usedfule for Euv masks

D. Hellweg et al., Proc. SPIE 10143, 101430J (2017).
 M. Weiss et al., Proc. SPIE 9422, 942219 (2015).

AIMSTM EUV measurement of mask 3D focus shifts

Uses through focus aerial image acquisition capability

1. Measure focus stacks for 16nm lines through pitch

AIMSTM EUV measurement of mask 3D focus shifts

Significant pitch-, pattern- and setting-dependent focus-shifts

- 1. Measure focus stacks for 16nm lines through pitch
- 2. Determine best focus shift

AIMS™ EUV measurement of mask 3D focus shifts

Significant pitch-, pattern- and setting-dependent focus-shifts

- 1. Measure focus stacks for 16nm lines through pitch
- 2. Determine best focus shift

AIMSTM EUV measurement of mask 3D focus shifts

Significant pitch-, pattern- and setting-dependent focus-shifts

1. Measure focus stacks for 16nm lines through pitch

Focus shift dependency can be verified using AIMS™ EUV

2. Determine best focus shift

AIMS™ EUV measurement of mask 3D focus shifts

Does not require knowledge of mask structure

- 1. Measure focus stacks for 16nm lines through pitch
- 2. Determine best focus shift
- 3. Compare to simulation

Stochastic Effects

Paradigm change DUV- to EUV-Lithography

DUV: Photon stochastics not important

EUV: Higher photon energy, smaller lithography feature

- Major contribution to wafer local CDU & LWR
- Stochastic printing defects on wafer
- Noisy wafer wafer SEM images

New AIMS™ Imaging Mode

Stochastics emulation capability*

8 mJ/cm^{2*}

* experimental mode

*Equivalent of 40mJ&/cm2 with 20% resist absorption

- Impact of photon stochastics on imaging can be studied
- → LCDU, LWR in aerial image

AIMS[™] EUV allows to separately measure mask making contribution and aerial imaging stochastics

AIMS™ EUV measurement of aerial image stochastics

- 1/NILS and 1/sqrt(dose) scaling confirmed
- AIMSTM EUV can range from mask making quality to stochastics regime

AIMS™ EUV standard mode: Mask making quality

New
AIMS™ EUV
stochastic mode
Photon stochastics in
wafer exposure

Evaluation of phton stochastics on wafer linewidth roughness AIMS™ stochastic mode

Sources of variances for wafer LER/LWR in EUV lithography

Goals of this study

EUV Lithography IX

- Measure, quantify, and correlate the variance and spectral components of aerial LWR and resist
 I WR
- Assess the relative contributions to resist LWR from mask absorber and multilayer roughness

2/27/2018

SPIE 2018

AIMS™ EUV enables separation of mask effects from wafer process effects

GLOBALFOUNDRIES ZEISS 2

Beneficial for root cause analysis of EUV specific mask 3D and stochastic effects

- Resist effects dominate wafer LWR
 - Mask qualification is only possible within the actinic aerial image

Agenda

- 1 Company Overview
- 2 Introduction to Aerial Imaging Metrology
- 3 AIMS™ EUV and Application Examples
- 4 Summary

Summary

- Aerial Imaging Metrology is Industry Standard since more than 20 years:
- "See the mask with scanner eyes"
- AIMS™ EUV: First system installed and released by customer
- EUV mask repair verification
- Printing Aware Mask Metrology:
 Accurate measurement of EUV mask 3D effects
 Separation of mask effects from lithographic process effects
 Impact of photon stochastics on imaging
- Enabling for EUV mask development and HVM production

